Isolation of vaccinia MVA recombinants using the viral F13L gene as the selective marker.

نویسندگان

  • Juana M Sánchez-Puig
  • Rafael Blasco
چکیده

Modified vaccinia Ankara (MVA) is a highly attenuated vaccine vector that has an excellent vaccine safety record. Also, as a eukaryotic gene expression vector, MVA can be used in a biosafety level 1 setup, in contrast to more virulent vaccinia virus strains. Isolation of recombinant MVA involves repeated plaquing of the virus and is burdensome because virus plaques are slow to develop and difficult to recognize. To facilitate the generation of MVA recombinants, we have developed a cloning system for MVA based on the selection of the viral F13L gene. Deletion of F13L in MVA produced a small plaque phenotype and a reduction in extracellular virus formation, indicating a severe block in cell-to-cell spread. When using the F13L knockout virus as the parental virus, reintroduction of the F13L gene in the original locus was used as an efficient selection for the isolation of virus recombinants. The selection procedure can be done entirely in the permissive baby hamster kidney (BHK)-21 cell line, does not require plaque isolation, and rendered close to 100% recombinant virus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Set of vectors for the expression of histidine-tagged proteins in vaccinia virus recombinants.

Vaccinia virus expression vectors are widely used to direct the expression of proteins in eukaryotic cells. Here, we describe a new set of plasmid vectors designed for the expression of histidine-tagged proteins in the vaccinia system. To facilitate the rapid isolation of virus recombinants, the plasmids contain a viral gene (F13L) that serves as an efficient selection marker based on virus pla...

متن کامل

Transient host range selection for genetic engineering of modified vaccinia virus Ankara.

Recombinant vaccinia viruses are extremely valuable tools for research in molecular biology and immunology. The extension of vaccinia vector technology to replication-deficient and safety-tested virus strains such as modified vaccinia virus Ankara (MVA) have made this versatile eukaryotic expression system even more attractive for basic and clinical research. Here, we report on easily obtaining...

متن کامل

Neomycin resistance as a dominant selectable marker for selection and isolation of vaccinia virus recombinants.

The antibiotic G418 was shown to be an effective inhibitor of vaccinia virus replication when an appropriate concentration of it was added to cell monolayers 48 h before infection. Genetic engineering techniques were used in concert with DNA transfection protocols to construct vaccinia virus recombinants containing the neomycin resistance gene (neo) from transposon Tn5. These recombinants conta...

متن کامل

Truncation of gene F5L partially masks rescue of vaccinia virus strain MVA growth on mammalian cells by restricting plaque size.

Modified vaccinia virus Ankara (MVA) is a candidate vaccine vector that is severely attenuated due to mutations acquired during several hundred rounds of serial passage in vitro. A previous study used marker rescue to produce a set of MVA recombinants with improved replication on mammalian cells. Here, we extended the characterization of these rescued MVA strains and identified vaccinia virus (...

متن کامل

Plaque size phenotype as a selectable marker to generate vaccinia virus recombinants.

In this report, we provide a new method for selection of vaccinia virus recombinants expressing foreign genes. The method is based on the use of the gene encoding the viral 14,000-molecular-weight envelope protein that rescues the small-plaque-size phenotype of a vaccinia virus variant to large-plaque-size virus. Selection of recombinants is easily obtained after visual inspection of large vira...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • BioTechniques

دوره 39 5  شماره 

صفحات  -

تاریخ انتشار 2005